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» �Complete Guide to Induction
Coil Design

Induction coil design can 
have a major impact on part 
quality, process efficiency, 
and manufacturing costs. 

This guide provides (almost) 
everything you need to design 
the optimal coil for your part  
and process. 

The first section covers Coil Basics - essentials of how coils work 
(a.k.a inductors, work coils) and why they’re designed the way  
they are.

The second section outlines different Types of Coils, common 
applications, and what affects coil efficiency.

The third section provides the details of Designing Your Coil, from 
the type of tubing to how far away your coil needs to be from your 
workpiece.

The fourth section covers issues you may face regarding Heating 
Uniformity & Part Irregularity, plus how to address these issues.

Section five includes calculations you might need and definitions 
of common induction coil terminology.

If you require additional assistance designing or manufacturing 
your coil, don’t hesitate to contact us.
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» �Section 1: Coil Basics

The induction coil determines how effectively and efficiently a workpiece is heated. 
Induction coils are water-cooled copper conductors made of copper tubing that is 
readily formed into the shape of the coil for the induction heating process. Induction 
heating coils do not themselves get hot as water flows through them. Work coils range 
in complexity from a simple helical- or solenoid-wound coil (consisting of a number of 
turns of copper tube wound around a mandrel) to a coil that is precision machined from 
solid copper and brazed.

Coils transfer energy from the power supply to the workpiece by generating an 
alternating electromagnetic field due to the alternating current flowing in them. The  
coil’s alternating electromagnetic field (EMF) generates an induced current (eddy 
current) in the workpiece, which generates heat due to I Squared R losses (core losses). 

The current in the workpiece is proportional to the coil’s EMF strength. This transfer of 
energy is known as the transformer effect or eddy current effect.

Work Coil Basics
A current flowing in a conductor creates a magnetic  field. An alternating 
current creates an alternating field which  
produces an alternating current in a second conductor (the work piece). 
The current in the work piece is proportional to the field strength.

The transformer effect where the amount of current induced in the work 
piece is proportional to the number of turns on the coil and is generated 
as a mirror image of the work coil.

HOW COILS WORK
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Because coils use the transformer effect, characteristics of transformers can be helpful 
in understanding coil design. The inductor is similar to a transformer primary, and the 
workpiece is equivalent to the transformer secondary (assumed to be a single turn). 

Two important features of transformers that impact coil design: 

• Efficiency of coupling between the windings is inversely proportional to the square of 
the distance between them

• (Current in the primary of the transformer * # of primary turns) = (current in the 
secondary * # of secondary turns) 

 
Because of the above relationships, there are five conditions that should be kept in mind 
when designing any coil for induction heating:

1. Higher flux density near the heating area means a higher current is generated in  
the part.

	 Coil should be coupled as close to the part as possible, and the largest possible 
number of magnetic flux lines therefore intersect the workpiece at the heating point.  
This allows for maximum energy transfer. 

2. The greatest number of flux lines in a solenoid coil are toward the center of the 
coil.

	 The flux lines are concentrated inside the coil, providing maximum heating rate at that 
location.

3. The geometric center of the coil is a weak flux path.

	 Flux is most concentrated closer to the coil turns themselves, and decreases with 
distance from the turns. 

	 If a part were placed off center in a coil, the area closer to the coil turns would 
intersect a greater number of flux lines and thus be heated at a higher rate. The area  
of the part away from the copper coil experiences less coupling and would be heated 
at a lower rate. 

	 This effect is more pronounced in high-frequency induction heating.

4. The magnetic center of the inductor is not necessarily the geometric center.

	 At the point where the leads and coil join, the magnetic field is weaker. 

	 This effect is most pronounced in single-turn coils. As the number of coil turns 
increases and the flux from each turn is added to that from the previous turns, this 
condition becomes less important.

	 Due to the impracticality of always centering the part in the work coil, the part should 
be offset slightly toward this area in static heating applications. If possible, the part 
should be rotated to provide uniform exposure.

5. Coil must be designed to prevent cancellation of the magnetic field.

	 If opposite sides of the inductor are too close, the coil does not have sufficient 
inductance required for efficient heating. Putting a loop in the coil at the center will 
offset this effect. The coil will then heat a conducting material inserted in the opening. 

TRANSFORMERS & INDUCTION 
COILS

FIVE BASICS OF COIL 
FUNCTIONALITY

» �Section 1: Coil Basics
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THERE ARE MORE THAN 20 DIFFERENT TYPES OF COILS  
USED FOR INDUCTION HEATING. 
Here are their pros and cons, plus some common applications. The 
helical solenoid coil provides a wide range of heating behaviors 
since the part or heating area is located within the coil, in the area of 
greatest magnetic flux.

1. MULTI-TURN HELICAL COIL

The helical (solenoid) is the most common and by far the most efficient coil. The number 
of turns defines the length of the heating pattern. 

The workpiece can be stationary in the coil to provide a defined heating band in “single 
shot heating.” Or, the workpiece can be moved through the coil to heat a longer part with 
a highly uniform heating pattern called “scan heating. 

2. SINGLE-TURN COIL

Single-turn coils are ideal for heating a narrow band of a workpiece or the tip of a 
workpiece. These coils can also scan the length of a workpiece and are commonly used 
for heat treating. 

These coils are often tight to the part to provide a precise heat pattern.

3. MULTI-POSITION HELICAL COIL

Multi-position coils are often used to produce more parts in a given time while allowing 
for the full heating process. 

Any number of positions are possible but typically up to 8 positions are practical. 
Parts can be heated simultaneously or can be indexed in and out of different positions, 
depending on the heating process required.

4. CHANNEL COIL / CONVEYORS

When power densities are low and heating cycles not extremely short, parts can be 
processed by use of a turntable or conveyor in a continuous or indexing mode. The coil 
must then be designed to permit easy entry and exit of the part.

Coils can be formed so the workpiece is heated as it moves through the electromagnetic 
field by a linear transport mechanism. The coil can be configured to heat all of the part or 
just a single narrow band on the part.

As long as the conveyor material is not electrically conductive, the magnetic field will 
pass through the conveyor and heat the workpiece as it passes through this field.

The simplest conveyor or channel coil used in these situations is a modification of the 
hairpin inductor. With the indexing technique, in which the part is at rest in the coil 
during the heating cycle, the ends of the hairpin can be decoupled to prevent overheating 
of the ends. These raised portions or bridges also facilitate passage of the part through 
the coil. 

Improving coupling

When a wide heating zone is to be produced on the part, coupling over a greater area 
can be accomplished through the addition of a liner to the coil turn, or more ampere 
turns can also be produced with a multiturn channel inductor.

» �Section 2: Choosing Your Coil Type



7

Channel-coil liners may also be configured to produce specialized heating patterns 
where greater heat densities are required in specific areas.

Fill factor

During design of heating operations for channel coils, you should consider a “fill factor” 
for efficiency. The unused portions of the coil appear as lead losses. Parts must be as 
close as possible without touching to get the full effect of the inductor. 

Part rotation

Further, the areas of the workpiece closest to the channel coil receive the greatest 
portion of flux and heat the fastest. 

If conduction through the part is slow, the part should be rotated while passing through 
the coil. Sufficient time or speed variation must be provided to allow heat uniformity in 
areas farthest from the coil turns.

5. CURVED CHANNEL COIL

Channel coils are often curved to fit onto a rotary table. They’re configured to occupy 
one of the steps in a multistep assembly process. 

6. PANCAKE COIL

Pancake coils are used when it’s necessary to heat the workpiece from only one side, 
or when it’s not possible to surround the part. Pancake coils can also be used to heat a 
small narrow band in the center.

The pancake coil provides a wide range of heating behaviors since the flux from only 
one surface intersects with the workpiece.

7. SPLIT HELICAL COIL

Single- or multiple-turn split helical coils are used when it’s not possible to access the 
target heating area using a helical coil.

Some applications will require the split-coil design to include the ability to quench 
through the face of the inductor.

The faces of the hinged and fixed portions of the coil must have good surface-to-surface 
contact. These are typically faced with silver, or special alloys matched to provide good 
contact. Clamps are used to ensure closure during heating. High currents pass through 
this interface at high frequency, which means the life of the contact is generally limited.

Coolant for the coil chamber of the split inductor is carried by flexible hoses that bypass 
the hinge so that excessive heating does not occur in the movable section during the 
cycle. The quench chamber is fed by a separate hose arrangement. 

The face of the quench chamber is closest to the work during heating, and carries most 
of the current. It must be sufficiently thick to avoid melting or distortion during the 
heating cycle.

Split coils often require a means of locating the part in the coil to maintain proper 
coupling distance. Ceramic pins or buttons are frequently secured to the face of the 
inductor. These are subject to thermal shock during heating/quenching and should be 
designed for simple replacement. 

» �Section 2: Choosing Your Coil Type
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» �Section 2: Choosing Your Coil Type

8. INTERNAL COIL

The internal coil provides a wide range of heating behaviors for bore heating, where only 
flux on the outside of the coil is used.

Internal bores can be heated using single- or multiple-turn internal coils. Tubing for 
internal coils should be made as thin as possible, and the bore should be located as 
close to the surface of the coil as is feasible. 

Because the current in the coil travels on the inside of the inductor, the true coupling of 
the maximum flux is from the ID of the coil to the bore of the part. Thus, the conductor 
cross section should be minimal. 

10 kHz 450 kHz

Minimum internal diameter of bore 1.0 in (2.5 cm) 0.44 in (1.1 cm)

Ideal distance between coil OD & part 0.14 in (0.36 cm) 0.062 in (0.16 cm)

The coil tubing can be flattened to reduce the coupling distance, and the coil OD can be 
increased to reduce the spacing from coil to workpiece.

More turns, or a finer pitch on an internal coil, will also increase the flux density. 
Accordingly, the space between the turns should be no more than one-half the diameter 
of the tubing, and the overall height of the coil should not exceed twice its diameter. 

If your coil design may produce a pattern of vertical bands, the part should be rotated 
for uniformity of heating. 

Internal coils, of necessity, utilize very small tubing or require restricted cooling paths. 
Further, due to their comparatively low efficiency, they may need very high generator 
power to produce shallow heating depths. 

9. CONCENTRATOR PLATE COIL

Concentrator plates are used in single- or multiple-turn coils to focus the current and 
produce a defined heating effect in the workpiece. 

These coils may also have a master coil with inserts designed to heat different shaped 
parts.

10. HAIR-PIN COIL

A long, thin single- or multiple-turn coil is used to heat a long, thin zone on a part. It can 
also be used to heat a moving web of thin steel or aluminum. 

11. ENCAPSULATED COILS

Once the coil is designed and heating pattern proven, it’s common to encapsulate the 
coil. This provides thermal insulation from the process and makes the coil assembly 
more robust in harsh environments. 

Typical encapsulation materials are concrete, ceramics, and epoxy or thermoplastics.

12. TRANSVERSE-FLUX COIL

Used with parts that have a long longitudinal axis and a thin cross-section.
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The coil is designed to set up a flux field that is perpendicular to the part. The path of the 
eddy currents is changed to be parallel to the major axis of the work. 

For example, when manufacturing items such as hacksaw blades, the steel moves 
between the turns of the coil. The eddy-current path is a circular one across the flat 
of the blade. For heating of wide sheet materials, specially designed transverse-flux 
inductors are also available. 

13. SPLIT-RETURN INDUCTORS

Used when a narrow band of heat is required from one surface only. 

The center runner of the work coil carries twice  
the current of each of the return legs. The  
pattern on the workpiece produces four  
times as much heat under the center leg as  
in each return loop. 

With proper balancing, the high-heat path  
can be extremely narrow, while the heat  
produced in each return leg will not affect  
the rest of the part.

 

14. TAPPED COILS

Induction coils can be designed with taps to allow for differences in heated length. For 
instance, heating “off the end” of a bar, where the heating element must be adjusted to 
the length. 

Taps can be brazed to the work coil where a water-cooled strap can be moved from tap 
to tap. The active portion of the coil will be between the power-supply connection and 
the tap.

15. BUTTERFLY COILS

For creating an even heating pattern at the end of a bar or shaft. 

Butterfly coils have two specially formed pancake coils. Center turns must be wound 
in the same direction so the current paths are additive. Only these center turns should 
couple directly with the part to produce the desired pattern.

The butterfly “wings” may be bent up to decouple their fields from the shaft, or may be 
coupled with the shaft itself. 

» �Section 2: Choosing Your Coil Type
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» �Section 2: Choosing Your Coil Type

16. COILS FOR INDUCTION SCANNERS

Used for progressive hardening. Built using two methods:

Simple single-turn or multiturn coil with a separate quench ring that can be mounted on 
the scanner.

For larger production runs, a double chamber coil that incorporates both coil cooling 
and quenching capabilities is often the preferred choice. Cooling water flows from the 
inductor chamber to keep copper resistivity low. Quenchant is sprayed from perforations 
in the beveled face onto the workpiece as it exits. 

The beveled face is normally at an angle of 300 to the vertical to allow some soaking 
time between heating and quenching. This delay helps increase uniformity and reduce 
fluid runback that can cause uneven heating of the workpiece.

Well-directed quench spray holes are required inasmuch as “barber poling” can occur 
due to erratic or misdirected quenchant that precools the part ahead of the main  
quench stream.
 

17. MASTER WORK COILS AND COIL INSERTS

Used for small batches where a single-turn coil can be used. 

Master work coils provide a simple, rapid means of changing coil diameters or shapes 
to match a variety of parts. Master work coils typically consist of copper tubing that 
provides both an electrical connection to the power supply and a water-cooled contact 
surface for connection to a coil insert. 

The copper tube is bent into the form of a single-turn coil and soldered to a copper band 
that conforms to the slope of the coil insert and is recessed. 

Read about designing coil inserts here. 

18. FLEXIBLE INDUCTION COILS

Used for heating parts like large steel dies, or complex geometry parts, where traditional 
rigid coils are not practical due to loading and unloading constraints. Coils are then 
designed with flexible copper conductors located inside flexible non-conducting tubes to 
be wound on location. Induction powers up to 200-250kW can be used with these coils.  
Higher powers are possible with careful manipulation of the cooling water paths in the 
coil designs.

19. AIR COOLED INDUCTION COILS

There are some special instances where water cooling inside induction coils is not 
practical or required. In these situations, air-cooled copper coils are used for heating. 
The copper conductors can be constructed with solid copper rods, flexible copper 
braids, or litz wires. Certain aerospace and medical applications successfully use air 
cooled coils for heating.

20. COILS WITH FLUX CONTROLLERS

Coils radiate magnetic fields that sometimes heat neighboring metallic fixtures or 
supports. This can be avoided by wrapping the outside of the induction coil with a 
ferrite material. The ferrite material captures all the stray magnetic field by offering a 
low resistance gateway. Since the magnetic field flows through the ferrite there is less 
tendency to heat surrounding metal pieces.

18. Flexible 
Induction  
Coil

19. Air 
Cooled 
Induction  
Coil

20. Ferrite Coil
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Frequency 10 Hz 450 kHz

Type of coil Magnetic steel Other metals Magnetic steel Other metals

Helical around workpiece 0.75 0.50 0.80 0.60

Pancake 0.35 0.25 0.50 0.30

Hairpin 0.45 0.30 0.60 0.40

One turn around workpiece	 0.60 0.40 0.70 0.50

Channel 0.65 0.45 0.70 0.50

Internal 0.40 0.20 0.50 0.25

Coil efficiency is the energy delivered to the coil that is transferred to the workpiece. 
This is NOT the same as overall system efficiency.

Typically, helical coils used to heat round workpieces have the highest values of coil 
efficiency. Internal coils have the lowest values.

It is important to note that, with the exception of the pancake and internal coils, the 
heated part is always in the center of the flux field. Regardless of the part contour, the 
most efficient coils are essentially modifications of the standard, round coil.
 
A conveyor or channel coil, for example, can be looked at as a rectangular coil 
whose ends are bent to form “bridges” in order to permit parts to pass through on a 
continuous basis. The parts, however, always remain “inside” the channels where the 
flux is concentrated. 

Areas to be hardened are beside the center of the coil turns, and thus are kept in the 
area of heaviest flux.

TYPICAL COUPLING 
EFFICIENCIES FOR  
INDUCTION COILS

INDUCTION COIL APPLICATIONS – WHICH COIL SHAPES ARE TYPICALLY USED?

» �Section 2: Choosing Your Coil Type

Heat treating 
	 Simple solenoid coils (single- & multi-turn)

Hardening 
	 Multiple position helical coils 
	 Simple solenoid coils (single- & multi-turn)

Progressive Hardening 
	 Simple solenoid coils (single- & multi-turn)

Brazing
	 Simple solenoid coils (single- & multi-turn)
	 Contoured coils to match the shape of the 	
	 part being heated.
	 Channel coils

Soldering
	 Simple solenoid coils (single- & multi-turn)
	 Contoured coils to match the shape of the 	
	 part being heated.
	 Channel coils

Forging 
	 Simple solenoid coils (single- & multi-turn)
	 Multi position helical coils

Electric Melting

Tempering  
	 Simple solenoid coils (single- & multi-turn)
	 Multi position helical coils
	 Internal bore coils for internal diameter 	
	 heating
	 Channel coils 

Melting
	 Multi turn helical coils, having multiple 	
	 parallel water and electric paths

Annealing
	   Simple solenoid coils (single- & multi-turn)
	   Multi position helical coils
	   Pancake coils, transverse flux coils
	   Channel coils

Shrink-fitting 
	   Pancake coils, transverse flux coils
	   Channel coils 

Bonding 
	   Simple solenoid coils (single- & multi-turn)
	   Multi position helical coils
	  Pancake coils, transverse flux coils

Curing
	  Simple solenoid coils (single- & multi-turn)
	  Multi position helical coils
	  Pancake coils, transverse flux coils
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» �Section 3: Designing Your Induction Coil

Coil design is essential to the effectiveness and efficiency of an induction heating process. This is based on a few things:

Basic Considerations

Coil efficiency Coil efficiency is a measure of the energy transferred to the workpiece off the energy 
delivered to the coil. This is NOT the same as overall system efficiency.

Heating pattern requirements The heating pattern is a mirror reflection of the coil shape. The design of the coil is the 
most important factor for determining the heating pattern.

Part motion relative  
to coil

Several applications rely on part movement with the help of conveyors, turntables, or 
robots. A properly designed induction coil incorporates these individual handling require-
ments without the loss of heating efficiency. 

Production rate If one part is needed every 30 seconds but a 50-second heating time is required, it will be 
necessary to heat the parts in multiples to meet the desired production rate. 

Type of power supply
Solid state components are preferred in the induction heating power supply as opposed to 
vacuum tube components. Design should be such that it is flexible, versatile and  
efficient in converting the energy draw from the grid to the heating process.

Frequency
Higher frequencies are used for applications like brazing, soldering, annealing or heat 
treating, where surface heating is desired. Lower frequencies are preferred for applications 
requiring through-heating of the parts to the core like forging and die heating.

Powder-density  
requirements

Higher power densities are required for short cycle heating applications requiring high 
temperatures. Higher power densities may also be required to keep the hot zone confined 
to a small area, reducing the heat affected area. 

Ferrous vs nonferrous

Ferrous metals heat much more efficiently than non-ferrous metals due to combination of 
eddy current  and hysteretic heating. They are therefore preferred materials to heat with 
induction. However, they should be avoided in the design of holding fixtures for parts as 
they may waste energy by heating from the magnetic fields.

 
Start with understanding where the heat needs to be generated in the part to perform the process, and then design the 
coil to achieve the heating effect. 

Matching the coil to the induction power supply is also essential to the efficiency of the process. Frequency-agile 
induction systems make it easy to match a wide range of coils with a multi-tap output transformer in the power supply.

In addition, material-handling techniques determine what type of coil is needed. If a part will be inserted in a coil, 
moved on a conveyor, pushed end to end, or if the coil/heat station will move onto the part, the chosen coil design must 
accommodate these movements.

COIL DESIGN CONSIDERATIONS

SELECTION OF TUBING Because of its low resistivity, fully annealed, high-conductivity copper is most 
commonly used for induction heating coils. 

• The copper is typically in a tubular form, with a minimum outer diameter of 0.125 
in (0.32 cm) to allow for water cooling. Diameters can be as large as 2 in (5.1 cm) 
for high power applications.

• Material of this kind is available in a wide range of cross-sections (round, square, 
and rectangular) and sizes.

In addition to the I squared R loss due to its own resistivity, the coil surrounding 
the heated part may absorb additional heat through radiation and/or convection. 

Therefore, it is essential that the tubing selected for the work coil have a sufficient 
cooling capacity to remove this heat. Otherwise, the resistivity of the copper will 
increase due to the temperature increase, thus creating greater coil losses. 
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In some instances, such as large coils, it may be necessary to break up the individual water paths in a coil to prevent 
overheating and possible coil failure. 

Another factor in the selection of tubing for induction coils relates to the fact that the current in the workcoils is traveling 
at a specific reference depth that depends on the power-supply frequency and the resistivity of the copper. 

Accordingly, the wall thickness of the coil tubing should be selected to reference-depth limits similar to those used for 
induction heating of copper. However, copper availability must be considered, and often wall thicknesses less than twice 
the reference depth are used with only a nominal loss in overall coil efficiency. 

Selecting copper tubing wall thickness for induction coils:

Frequency

Theoretical wall 
thickness (= 2 * 

reference depth (a)), 
mm (in.)

Typical wall 
 thickness available,  

mm (in.)

Minimum tube  
diameter (b),  

mm (in.)

60 Hz 16.80 (0.662) 14.00 (0.550) 42.00 (1.6550)

1800 Hz 9.700 (0.382) 8.130 (0.320) 24.30 (0.9550)

540 Hz 5.590 (0.220) 4.670 (0.184) 14.00 (0.5500)

1 kHz 4.110 (0.162) 3.430 (0.135) 10.30 (0.4050)

3 kHz 2.390 (0.094) 1.980 (0.078) 5.970 (0.2350)

10 kHz 1.320 (0.052) 1.070 (0.042) 3.300 (0.1300)

450 kHz 0.150 (0.006) 0.890 (0.035) 0.380 (0.0150)

1 MHz 0.080 (0.003) 0.890 (0.035) 0.190 (0.0075)

(a) Resistivity of copper assumed to be 1.67 * 10-6 • cm (0.66 * 10-6  • in.). 
(b) Tube ID requirements for adequate cooling-water flow should also be considered.

Square tubing

Square copper tubing is also commercially available and is frequently used in coil fabrication. 

• Offers a considerable advantage in that it couples more flux to the part per turn  
  than round tubing for tightly coupled coils

• More easily fabricated - it will not collapse as readily on bending

• Easily mitered to create sharp, close bends as required

If only round tubing is available, it can be flattened in a vise or other simple device to adjust the resultant thickness 
dimension. This flattening can be done with minimal decrease in dimension of the water-flow path.

» �Section 3: Designing Your Induction Coil
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» �Section 3: Designing Your Induction Coil

Multiturn coils

In multiturn coils, as the heated length increases, the number of turns generally should 
increase in proportion. Multiturn coils of this type are generally utilized for large-
diameter, single-shot heating. 

When the length of the coil exceeds 4-8x its diameter, uniform heating at high power 
densities becomes difficult. In these instances, single-turn or multiturn coils that scan 
the length of the workpiece are often preferred. 

Multiturn coils generally improve the efficiency, and therefore the scanning rate, when a 
power source of a given rating is used. 

Single-turn coils

Single-turn coils are also effective for heating bands that are narrow with respect to the 
part diameter. 

The relationship between diameter and optimum height of a single-turn coil varies 
somewhat with size. A small coil can be made with a height equal to its diameter 
because the current is concentrated in a comparatively small area. With a larger coil, the 
height should not exceed one-half the diameter. 

NUMBER OF COIL TURNS

All coils represent an inductance to the tank circuit. However, in practice, the working 
portion of the coil may be only a small portion of the inductance presented to the tank. 
There may be a considerable distance of output lead between the output terminals of the 
generator and the heating portion of the work coil.

Design and construction of these work-coil leads can be a major factor in determining 
job feasibility. The effect of lead construction on system performance can be best 
understood with respect to its tank circuit. 

1. Each lead connecting the tank capacitor to the coil has its own inductance. 

2. The full voltage will never appear across the work coil. 

	 a. 	 If voltage is impressed across the total number of inductances, then some voltage 	
	 drop appears across each. 

	 b. 	If the inductance of the coil is approximately 10 times the total inductance of the 	
	 leads or greater, a maximum of 10% of the total voltage will be lost in the leads. 	
	 Any loss less than this can be considered nominal.

3. Higher inductance in the coil heating area offsets the effect of lead inductance.

	 a. 	Some coils have many turns, a large cross-sectional area, and thus fairly high 	
	 inductance. Hence, the comparative lead inductance is small. 

4. As the distance between the heat station and coil increases, lead inductances 
become more noticeable.

	 a. 	As the frequency increases, coils often become smaller in size, and their 		
	 inductance and inductive reactance decrease. 

LEAD DESIGN
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	 b.	 With leads far apart, the space between the leads presents an inductance which 	
	 may be almost equal to or larger than that of the coil. Thus, a major portion of the 	
	 voltage will not appear on the coil. 

	 c. 	A better design minimizes this gap and thus improves heating efficiency. 

5. Leads can interact with nearby metal structures.

	 a. 	Because all leads have some inductance, they can act as work coils. Thus, a 	
	 conductor placed within their field will be heated. Leads placed adjacent to metal 	
	 structures will tend to heat them. 

	 b. 	In addition to unwanted heat, this loss reduces the power available to the load. 

	 c. 	 It is important that lead-to-lead separation be minimized and proximity to metallic 	
	 structural members be considered. Whenever possible, duct housings, trays, 	
	 or conduits must be of low-resistivity or insulating materials, such as aluminum  
	 or plastic.

Fishtail 

Induction heating lead designs typically make use of water-cooled copper plates or 
tubes. When coil voltages are low (X800v), a low-inductance structure known as a 
fishtail is often utilized. 

A fishtail is a pair of copper plates, placed with their wide bus faces parallel, that are 
water cooled to maintain low resistivity. They’re either separated physically with air as an 
insulator or held together by nylon bolts and nuts, with teflon or a similar material acting 
as a spacer.

Fishtails extend from the heat station to a point as close as possible to the operating area 
of the work coil. They present minimum inductance and provide maximum power at the 
coil. 

• Depending on conditions and construction, efficient runs from a few inches up to  
15 feet are practical. 

• The thickness of the copper plates should be consistent with the frequency (see: 
suggested wall thickness above)

• Cooling-water paths and sizes must be consistent with the power being transmitted 

• The copper plates should increase in width with generator power and the distance of 
the run

• They should be spaced as close together as possible, with only enough space for 
proper insulation to prevent arcing. However, good practice still dictates that coil leads 
be kept to a minimum length 

• Copper tubing sizes be consistent with frequency, current, and cooling requirements

• As the coil inductance increases (e.g., as the number of turns or the coil diameter 
increases), lead length becomes less critical, and plain copper tubing leads then 
become more practical. 

However, larger coils also require higher terminal voltages.

» �Section 3: Designing Your Induction Coil



16 Complete Guide to Induction Coil Design 
Using Induction

Free Evaluation Applications Learning

About

By Industry

By Process OEM Partnership

Contact

App or 
Technical Notes

Extra - Misc. Extra - Misc.

Product Catalog

Download 
Brochure

Products

Service

Contact

Document Support

Govt. Contracting Patents

ISO Emblem

Training

Responsive

» �Section 3: Designing Your Induction Coil

Rigid leads 

Rigid leads (tubing or bus) built to the above guidelines are inherently more effective than flexible, water-cooled 
cable. In some cases, however, it is absolutely necessary to use flexible connections. 

Flexible leads

There are several variations in flexible leads, but it must be kept in mind that the inductive lead losses in flexible 
cables are usually much greater than those for rigid connections. 

The most common flexible lead is generally used in applications similar to tilt-type induction melting furnaces 
and consists of a water-cooled, spiral-wound inner conductor (similar to BX cable, but made of copper) with an 
outer insulating covering. These leads are used in pairs with one for each lead connection. 

Not only must they be sized for current and frequency, but the insulation must be capable of handling the 
voltage rating of the system. Flexible leads should be tied together with insulating straps. 

Coaxial leads

Coaxial leads are also available and may be rigid or flexible. They consist of an inner conductor and an outer 
sheath or housing that is also used as the return conductor. This outer sheath is generally at ground potential. 

In addition to providing an extremely low-inductance lead, the outer ground acts to eliminate possible strong 
radiation or inductive coupling to adjacent structures. 

Rigid coaxial lead is generally quite expensive and is usually limited to those applications where it is imperative 
to transmit high power at high frequency over some distance.

Another type of coaxial cable is the water-cooled type generally used at radio frequencies. It consists of a low-
inductance, braided inner conductor that runs through a water-cooled tube, and an outer return braid that is 
also water-cooled. 

This construction is generally utilized with medium-to-high-inductance coils because its construction does not 
greatly minimize lead inductance but does provide flexibility. 

This last type of lead is most common when the operator must physically move the coil from part to part as is 
the case with bottle sealing.
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Electric currents flow in both the workpiece and the coil, which develops magnetomotive 
forces between the two. These forces can cause undesirable movement during induction 
heating. The magnitudes of the forces depend on the magnitudes of the currents.

• Coil turns can move relative to each other. Turns must be suitably braced to prevent 
movement and possible turn-to-turn shorting. 

• Coils can move relative to the workpiece, and the part can move in the coil. Coils 
should not move relative to the part to avoid undesirable changes in the heating 
pattern, eliminate coil vibration, and reduce acoustic noise. 

If proper bracing is not provided, the coil may gradually work harden and finally fail. 

TYPICAL BRACING TECHNIQUES

Brass studs

1. Brass studs are brazed to every other turn. 

2. These studs are then secured to insulator posts to hold them in a fixed relation to 
each other. 

3. Nuts on each side of the stud at the insulator allow adjustment for characterization of 
the heating pattern. 

Insulation 

1. Insulation contoured to hold the turns relative to each other after the end turns are 
secured with studs. 

	 The insulation used for bracing applications must meet the criteria for the coil design. 

	 In addition to the installation being capable of withstanding the heat radiated from the 
workpiece, its electrical capabilities must permit it to withstand the voltage between 
the mounting studs or the turn-to-turn voltages of the coil. 

	 This is of particular concern when using high-voltage RF coils where up to 12,000v 
may be impressed across the total coil. 

	 a. It may be necessary in these instances to provide slots between the stud locations 
in the insulator boards to increase the electrical creepage path between the studs. 

	 b. It may also be necessary to increase the heat-resistant characteristics of the 
insulation by facing the area exposed to the heated surface with a sheet of high-
temperature insulation. 

Encapsulation

For purposes of rigidity, cleanness, and protection, it is sometimes desirable to 
encapsulate work coils in a plastic or refractory material. The same kind of care with 
respect to voltage and temperature characteristics must be taken with these materials as 
with insulating boards. 

• Epoxy - For low-temperature induction heating applications, epoxy encapsulation of the 
coil is quite common. 

BRACING COILS

» �Section 3: Designing Your Induction Coil
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» �Section 3: Designing Your Induction Coil

• Refractory cement - For heating steel billets, coils are usually cast in a refractory 
cement to prevent scale from the part from falling between the turns. 

In coating of coils with refractory materials, care must be taken to match the pH of 
the refractory to that of the material being heated; for example, an acidic refractory is 
required for the ferrous scale that drops off during high-temperature heating of steels.

THREE MAIN FACTORS:

1. Type of Heating 

2. Type of Material (ferrous vs nonferrous)

3. Type of Frequency & Handling 

Type of Heating

In static surface heating, in which the part can be rotated but is not moved through the 
coil, a coupling distance of 0.060 inch (0.15 cm) from part to coil is recommended. 

For progressive heating or scanning, a coupling distance of 0.075 inch (0.19 cm) is 
usually necessary to allow for variations in workpiece straightness. 

A fine-pitch, multiturn coil closely coupled to the workpiece develops a very uniform 
heating pattern. 

Similar uniformity can be achieved by opening up the coupling between the part and 
the coil so that the magnetic flux pattern intersecting the heated area is more uniform. 
However, this also decreases energy transfer. 

Where low heating rates are required, as in through heating for forging, this is 
acceptable. 

When high heating rates are needed, it’s best to maintain close coupling. The pitch of the 
coil should be opened to prevent overloading of the generator.

Type of Material

For through heating of magnetic materials, multiturn inductors and slow power transfer 
are utilized. Coupling distances can be looser in these cases — on the order of 0.25 to 
0.38 inch (0.64 to 0.95 cm). 

Type of Frequency & Handling

It is important to remember, however, that process conditions and handling dictate 
coupling. If parts are not straight, coupling must decrease. 

At high frequencies, coil currents are lower and coupling must be increased. With low 
and medium frequencies, coil currents are considerably higher and decreased coupling 
can provide mechanical handling advantages. 

In general, where automated systems are used, coil coupling should be looser. The 
coupling distances given above are primarily for heat treating applications in which close 
coupling is required. 

COUPLING DISTANCE
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In most cases, the distance increases with the diameter of the part, typical values 
being 0.75, 1.25, and 1.75 inches (19, 32 and 44 mm) or billet-stock diameters of 
approximately 1.5, 4 and 6 inches (38, 102, and 152 mm), respectively.

In fabrication of copper coils, it must be noted that the copper work hardens with 
increasing deformation. Thus, most fabricators anneal the tubing every few bends to 
relieve this condition by heating the tubing until it is bright red, then cooling it rapidly in 
water. These intermediate anneals prevent fracture of the tubing during fabrication. 

In some forming operations, it may be desirable to fill the coil with sand or salt to 
preclude collapse of the tubing.

In addition, there are several low-temperature alloys - with melting points below 212°F 
(100°C) - that are normally used to perform this same function. 

When the coil is completed, it is immersed in boiling water. The alloy then flows out 
freely and can be reused at another time. 

With any of these techniques, once filled, the tubing acts as a solid rod during forming 
and can be simply cleared on completion.

COIL FORMING

» �Section 3: Designing Your Induction Coil
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» �Section 4: Customizing Your Coil Design  
for Heating Uniformity, Workpiece Shape, & Part Irregularity

Magnetic flux tends to concentrate toward the center of the length of a solenoid work 
coil. This means the heating rate produced in this area is generally greater than that 
produced toward the ends. 

Further, if the part being heated is long, conduction and radiation remove heat from 
the ends at a greater rate. The coil can be modified to provide better heating uniformity 
along the part length. 

1. Coil characterization

2. Six other common ways to improve heating uniformity

3. Heating two separate areas on a part

4. Heating tapered parts

5. Heating a part with secondary fabrications

6. Heating a variety of different parts with one coil

The technique of adjusting the coil turns, spacing, or coupling with the workpiece to 
achieve a uniform heating pattern is sometimes known as “characterizing” the coil. 

With all coils, flux patterns are affected by changes in the cross-section or mass of the 
part. There are several ways to modify the flux field. 

1. The coil can be decoupled in its center, increasing the distance from the part and 
reducing the flux in this area. 

2. The number of turns in the center (turn density) can be reduced. 

3. Altering a solid single-turn inductor by increasing its bore diameter at the center.

COIL CHARACTERIZATION
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1. Part rotation

Barber poling occurs when the high flux field adjacent to the coil turns produces a spiral 
pattern on the part. 

To eliminate barber poling, rotate the workpiece during heating. For most short-duration 
hardening operations, rotational speeds producing at least 10 revolutions during the 
heating cycle are ideal.

2. Tapered coil

When the coil extends over the end of a shaft-like part, a deeper pattern is produced on 
the end. To reduce this effect, the coil must be brought to a point even with or slightly 
lower than the end of the shaft. 

3. Shortened coil

The same condition exists in heating of a disk or a wheel. The depth of heating will be 
greater at the ends than in the middle if the coil overlaps the part. 

The coil can be shortened, or the diameter at the ends of the coil can be made greater 
than at the middle, thereby reducing the coupling at the former location. 

4. Coil liners

A coil liner is a sheet of copper soldered or brazed to the inside face of the coil. This 
liner expands the area over which the current travels. Thus, a wide field per turn can be 
created. The height of this field can be modified to suit the application by controlling the 
dimensions of the liner. 

When a liner is used, the current path from the power supply passes through the 
connecting tubing. Between the two connections, the tubing is used solely for 
conduction cooling of the liner. 

In fabricating coils with liners, it is necessary only to tack-braze the tubing to the liner at 
the first and last connection points, with further tacks being used solely for mechanical 
strength. 

The remainder of the common surfaces between tubing and liner can then be filled 
with a low temperature solder for maximum heat conduction, because the coil-water 
temperature will never exceed the boiling point of water, which is well below the flow 
point of the solder. 

This may be necessary because the copper may be unable to conduct heat fast enough 
from the inside of the coil. 

5. Stepping the coil

Stepping is easily accomplished by annealing the coil after winding and pressing it 
between two boards in a vise.

6. Flattened tubing

Flattened tubing should be placed so that its larger dimension is adjacent to the 
workpiece. The stepping of coil turns provides an even, horizontal heating pattern.

SIX OTHER COMMON  
WAYS TO IMPROVE  

HEATING UNIFORMITY

» �Section 4: Customizing Your Coil Design  
for Heating Uniformity, Workpiece Shape, & Part Irregularity
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» �Section 4: Customizing Your Coil Design  
for Heating Uniformity, Workpiece Shape, & Part Irregularity

When two separate regions of a workpiece are to be heated, but are close together, it’s 
possible that the magnetic fields of adjacent coil turns will overlap, causing the entire 
bar to be heated. 

HEATING TWO SEPARATE 
AREAS ON A PART

To avoid this problem, successive turns can be wound in opposite directions. By this 
means, the intermediate fields will cancel, and the fields that remain will be restricted. 

It should be noted that lead placement is critical. Having the return inductor spaced far 
from the coil leads would add unneeded losses to the system. 

A counter wound coil can be used effectively in an application in which the rim of a 
container is to be heated while the center remains relatively cool.

COUNTER WINDING

Another technique that can be utilized in the above circumstances involves the 
construction of a shorted turn or “robber” placed between the active coil turns. 

In this case, the shorted loop acts as an easy alternative path for concentration of the 
excess flux, absorbing the stray field. It is therefore sometimes called a flux diverter. As 
for the active coil turns, the robber must be water cooled to dissipate its own heat. 

Shorted coil turns are also used effectively to prevent stray-field heating on very large 
coils where the end flux field might heat structural frames. 

Flux robbers or flux diverters can also be used in fabricating test coils when it is desired 
to determine the optimum number of turns empirically. In these situations, a few 
additional turns are provided that can be added or removed as required. These can be 
shorted with a copper strap or temporarily brazed while tests are made and removed 
pending the outcome of the heating trials.

SHORTED TURNS  
(“ROBBERS”)
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PARTS WITH FABRICATIONS Just as flux tends to couple heat to a greater depth at the end of a shaft, it will do 
the same at holes, long slots, or projections. If the part contains a circular hole, an 
additional eddy-current path is produced that will cause heating at a rate considerably 
higher than that in the rest of the part.

The addition of a copper slug to the hole can effectively correct or eliminate this 
problem:

• The position of the slug can control the resultant heating pattern. 

• The slug will minimize hole distortion if the part must be quenched following heating.

For slotted parts heated with solenoid coils, the continuous current path is interrupted 
by the slot, and the current must then travel on the inside of the part to provide a closed 
circuit. This is the basis for concentrator coils. 

Fun Fact:  
With the slot closed, the applied voltage of the work coil causes a higher current to 
flow. This is due to the fact that the resistive path, now around the periphery of the 
part, is considerably shorter. The increase in current then produces a considerably 
higher heating rate with the same coil.

Coil turns can be modified to produce an even heating pattern on a tapered shaft. The 
closer turn spacing toward the end compensates for the decrease in coupling caused by 
the taper. This technique also permits “through the coil” loading or unloading to facilitate 
fixturing.

For instance, a bevel gear with a greater part taper may benefit from a spiral-helical coil. 

With a pancake coil, decoupling of the center turns provides a similar approach for 
uniformity.

HEATING PARTS WITH  
TAPERED SHAPES

» �Section 4: Customizing Your Coil Design  
for Heating Uniformity, Workpiece Shape, & Part Irregularity
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» �Section 4: Customizing Your Coil Design  
for Heating Uniformity, Workpiece Shape, & Part Irregularity

Master Coil & Coil Inserts 

Inserts clamp to the master coil via matching tapped holes. Inserts are machined from 
copper with a thickness that matches the required heating pattern. This should be 
somewhat greater in thickness than the depth of the recess for easy removal.

Because of less-than-optimal cooling, coil inserts are particularly well adapted to short 
heating times or processes in which they are also cooled by the quenching medium.

Coil insert designs should indicate softening of sharp corners during machining. 
Corners tend to overheat relative to the rest of the pattern, generating more heat in these 
locations. Relieving or decoupling of only the corners is the best solution, particularly 
when a solid inductor is used and the relief can be machined as required.

HEATING A VARIETY OF PARTS
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» �Section 5: Resources

• Coupling distance

Generally, distance increases with the diameter of the part, typical values being 0.75, 
1.25, and 1.75 inches (19,32 and 44 mm) or billet-stock diameters of approximately 1.5, 
4 and 6 inches (38, 102, and 152 mm), respectively.

When the length of the coil exceeds 4-8x its diameter, uniform heating at high power 
densities becomes difficult. In these instances, single-turn or multiturn coils that scan 
the length of the workpiece are often preferable. 

• Coupling efficiency

Efficiency of coupling between the windings is inversely proportional to the square of 
distance between them.

• Minimum tubing OD

Minimum outer diameter of copper tubing is 0.125 in (0.32 cm) to allow for water 
cooling.

• Rotational speed

For most hardening operations, which are of short duration, rotational speeds producing 
AT LEAST 10 revolutions during the heating cycle should be used.

• Current 

(Current in the primary of the transformer * # of primary turns) = (current in the 
secondary * # of secondary turns) 

• Voltage loss

If the inductance of the coil (L2) is approximately 10 times the total inductance of the 
leads (L1 plus L3) or greater, a maximum of 10% of the total voltage will be lost in the 
leads. 

Any loss less than this can be considered nominal.

• Lead spacing for internal coils

More turns, or a finer pitch on an internal coil, will also increase the flux density. 
Accordingly, the space between the turns should be no more than one-half the diameter 
of the tubing, and the overall height of the coil should not exceed twice its diameter. 

• Internal coil ID

For all practical purposes, a bore with a 0.44-inch (1.1-cm) internal diameter is the 
smallest that can be heated with a 450-kHz power supply. 

At 10 kHz, the practical minimum ID is 1.0 inch (2.5-cm).

FORMULAE & CALCULATIONS

Excerpts in this guide used with permission from Stanley Zinn.
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» �Section 5: Resources

• Leads 

Sections of coil between the generator and the heating portion of the work coil. Leads 
carry inductance to the heating portion of the coil, but do not typically interact with the 
workpiece.

• Coupling 

The transfer of energy that occurs in the space between the heating portion of the coil 
and the workpiece.

• Tubing 

The material through which the electrical current will travel. Also provides the path for 
water cooling.

• Generator / capacitor

The external source of inductance. The work coil is connected to the generator via output 
terminals that transfer the current into the coil. 

• Water cooling 

Induction heating requires water cooling throughout the system to maintain low 
resistivity and keep the temperature output in the desired range. Water cooling is 
different from quenching, where water is sprayed onto the workpiece to bring its 
temperature down quickly.

• Heating patterns

The pattern of heat transferred to the workpiece from heating portions of the work coil. 
The heating pattern is the mirror image of the coil.

• Flux 

The amount of heat transferred from the work coil to the workpiece. 

• Inductance 

The ability of the heating system to induce voltage via a varying current and magnetic 
field.

• Pitch 

Spacing between centers of neighboring turns; the gap between the turns plus wire 
diameter.

• Bore 

Internal surface of a component that requires special work coil design to heat.

• Turns 

Number of times the coil tubing is wound around a central point.

GLOSSARY
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• Magnetic field / EMF

A current flowing in a conductor creates a magnetic field. The field generates a current 
in the workpiece that’s a mirror image of the current in the work coil. The current in the 
workpiece is proportional to the field strength.

• Transformer 

The transformer effect says the amount of current induced in the workpiece is 
proportional to the number of turns on the coil and is generated as a mirror image of 
the work coil.

• Hysteretic heating

Comes into effect when the workpiece is a magnetic material such as carbon steel. 

Energy is generated within the workpiece by the alternating magnetic field, which 
changes the magnetic polarity within the workpiece. 

Hysteretic heating occurs in the workpiece only up to the Curie temperature (750° C for 
steel) when the material’s magnetic permeability decreases to 1.

» �Section 5: Resources
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